Probability Vs Randomness for Future Technologies

Benjamin T Solomon Xodus One Foundation

Quantum & Nuclear Engineering Conference September 27 – 28, Madrid, Spain

Agenda

- About
- Structure of Randomness
- Structure of Interaction
- Structure of Localization
- Proposed Experiments

About: Benjamin T Solomon

Proposed

- All macro forces exhibit Non Inertia, Ni, Fields (diagram)
- Universal formula $g = \tau c^2$ for Ni Fields
- Isotopic gravitational coefficient G_i $G_iM_i = k_{iso} = 2.973856x10^{-36} m^3 s^{-2}$

Probabilistic Wave Function

$$\psi_P = \varphi_P \chi_P = \left(\frac{1}{k_P r_P}\right) sin(k_P r_P)$$

Approach: Sufficient versus Necessary

- Morris Klein: Mathematics is so sophisticated it can be used to prove anything!
- A mathematical description is a necessary but insufficient requirement.
- What is the real physical structure that causes physical phenomena?

Approach: Big Questions

- How are Probabilities implemented in Nature?
- What is the Mechanism behind Randomness?
- Solution:
 - Deconstruct,
 - Deconstruct,
 - Deconstruct

Probability Implementation

- Conservation of electric and magnetic fields
 - Proposed field vectors rotate between spacetime (x, y, z, t) and subspace (x, y, z)

Structure of Randomness

Inference about Particle Properties

Photons cannot produce random states

• Mass particles can produce random states

Benjamin T Solorion - Quantum & Nuclear Engineering Conference, September 27-28, Madrid Spain

Axiom 1, States η :

- Fundamental state η must have N_{η} unique values
- For example spin takes $\pm n\frac{1}{2}$

Axiom 2, Receptacle ρ:

A receptacle ρ is a fundamental carrier of the states η_i

Benjamin T Solomon - Quantum & Nuclear Engineering Conference, September 27-28, Madrid Spain

Axiom 3, Collection Σ:

- A collection Σ is a group of N_{ρ} receptacles ρ_i
 - Example, an electron shell
- Beware of Large Numbers as these mask the underlying distribution of states η_i

collection Σ_m , any state *j* of receptacle *i*

Axiom 4, True Internal Independence:

- True internal independence occurs when, within the same collection Σ_m ,
 - Any state *j* of receptacle *i* or state *l* of another receptacle *k* is independent of each other
- Not true in electron shell Pauli's Exclusion Principle

state / of receptacle k

Axiom 5, Sequence Θ:

- A sequence Θ is a set of states that are associated in space or time.
 - Example, a plane of atoms

Axiom 6, External Spatial Randomness:

- Spatial randomness requires
 - Given a local space δl
 - No correlation between neighboring states η_i
- Example, radioactivity

Axiom 7, External Temporal Randomness:

- Temporal randomness
 - Given a time interval δt
 - No correlation between successive states η_i
- Example, radioactivity?

Structure of Interaction

Four Distinct Sources of Phenomena

- Particle Properties
 - Electromagnetic Wave
 - Photon Energy *hv*
 - Probability Field
- Plane Material Properties
 - Localization

Q: Why does an orthogonally oscillating substrate have momentum?

Spectrum Independence

- Photon behavior: function of geometric structures
- Electric & magnetic energy store • $E_A = \frac{\lambda_P}{4\sqrt{\epsilon}}$ or $E_A E_P = \frac{hc}{4\sqrt{\epsilon}}$
- Photon probability field is time invariant • $P_N = \left(\sqrt{\frac{hc}{4\sqrt{\epsilon}E_A}} \right) \frac{ln(E_P)}{r_P} = \left(\sqrt{\frac{ln(E_P)}{r_P}} \right)$ (wave function removed)

Consensus Wave Function Interpretation

Probabilistic Wave Function Filtering

Best Interpretation: Bottom wave function cut off

Filtering:

- θ = α
- Amplitude sign: +ve/up, -ve/down

Example: Polarization

Probability Field Exists Before Localization

- Probability field is orthogonal to motion vector
- Probability does not come into effect until photon arrival

Electromagnetic Function ≠ Probability

- Independent properties
 - Reflection is electromagnetic
 - Localization is probabilistic
- Localization requires nonreflective interactions
- Electromagnetic ability ≠ probability
 - Can (em) versus Will (probability)

Probability ≠ Localization - It is Not Random

- A trigger (readiness) is required to effect localization
- For an identical set of atoms in the local vicinity,
 - Ready atoms receive photons
 - Not ready atoms will not
- Randomness = Loss of Control

Summary: Photon Structure

- Umbrella shaped basic structure
- Other particle properties are built around this structure

Structure of Localization

Localization Definition

- Electron shell is ready when
 - Spacetime-subspace join exists
- Localization = join + probability field

Uncorrelated neighboring states η_i

- Uncorrelated localization
- Uniformly distributed

Correlated neighboring states η_i

- Localizations are correlated
 - For a selected ring
 - Specs = multiple localizations
 - Gaps = multiple avoidances
 - Ready/Not Ready are clustered
 - Spatial & temporal(?) randomness not true
- Source of this correlation?
- Underlying phenomenon?

What is the Correlation Source?

- Aperture design & material
- Screen material

Summary: Matter is Correlated

- Localizations are correlated
 - Both spatial &/or temporal

Proposed Experiments

Benjamin T Solomon - Quantum & Nuclear Engineering Conference, September 27-28, Madrid Spain

Probability versus Velocity

• To prove and control photon probabilities

• Experiment

- Test Hypothesis: t_h = t_d
- Alternate Hypothesis: $t_h \neq t_d$

Material Response: Measuring Readiness

- To make materials that have increased localization rates
- Ready frequency $F_{RN} = r_e$ when r_e just exceeds c_a for N atoms per unit time
 - Increase rate r_e of photon emission
 - Count photon arrivals c_a
 - Ready frequency $F_R = r_e / N$ per atom
 - Detection loss occurs when $F_{RN} < r_e$

Material Response: Non-Random Localization

- To significantly improve localization in one spot
 - By increasing the join rate
 - Without altering photon probability
 - Without using the electromagnetic properties
- Use reflecting substrate to eliminate the electromagnetic function at substrate
- Material correlated randomness, shows that this is possible

Photon Response: Phase Shift Photon

- To increase probability of localization
- Experiment: Alter photon's phase shift
 - Max localization $\theta = 0$
 - Or $\theta_i = 0$ for all $\theta_i > 0$

Entanglement Experiment

Joint Probability Effect

Subspace Probability Effect

Conclusion

- Probability & Randomness are two different phenomena
- Can infer particle structure
- Provided alternative avenues for further research

Contact: Ben Solomon

- Email:
 - <u>bts@XodusOneFoundation.org</u>
- Paper References:
 - http://www.iseti.us/pdf/PaperReference.pdf